硫酸盐还原菌(SRB)在乙酸环境中对X65钢腐蚀行为的研究

何婷婷, 冯艺, 闫化云, 王毛毛, 于海涛, 陈迎锋, 陆科洁

装备环境工程 ›› 2025, Vol. 22 ›› Issue (9) : 138-146.

PDF(7869 KB)
PDF(7869 KB)
装备环境工程 ›› 2025, Vol. 22 ›› Issue (9) : 138-146. DOI: 10.7643/ issn.1672-9242.2025.09.015
重大工程装备

硫酸盐还原菌(SRB)在乙酸环境中对X65钢腐蚀行为的研究

  • 何婷婷1, 冯艺2,*, 闫化云1, 王毛毛2, 于海涛1, 陈迎锋2, 陆科洁1
作者信息 +

Corrosion Behavior of X65 Steel by Sulphate Reducing Bacteria (SRB) in Acetic Acid Environment

  • HE Tingting1, FENG Yi2,*, YAN Huayun1, WANG Maomao2, YU Haitao1, CHEN Yingfeng2, LU Kejie1
Author information +
文章历史 +

摘要

目的 研究不同乙酸浓度介质中SRB的生长规律及不同乙酸环境下SRB对X65钢腐蚀行为的影响。方法 通过电化学测试、静态浸泡腐蚀试验及表面形貌分析进行研究。结果 在含乙酸体系中,SRB浓度显著高于无乙酸体系,其生长过程可分为快速生长期(0~7 d)和衰亡期(7~14 d)。无乙酸体系中,X65钢以均匀腐蚀为主,腐蚀速率为0.204~0.225 mm/a,腐蚀产物为Fe3O4。含乙酸体系中,试样表面形成局部腐蚀坑,坑内可见杆状SRB细菌,腐蚀产物为Fe3O4和FeS,局部腐蚀速率为0.365~1.564 mm/a,均匀腐蚀速率为0.046~0.068 mm/a。随着浸泡时间的延长,电化学腐蚀速率及局部腐蚀速率均出现下降趋势。结论 乙酸的加入显著提高了SRB浓度,大量SRB附着在X65钢表面,其代谢过程、代谢产物及腐蚀产物膜三者共同作用导致腐蚀机制发生显著变化。均匀腐蚀倾向虽有所降低,但局部腐蚀风险显著增大。

Abstract

The work aims to study the growth pattern of SRB in different acetic acid concentration media and the effect of SRB on the corrosion behavior of X65 steel in different acetic acid environments. The study was conducted by electrochemical tests, static immersion corrosion tests and surface morphology analysis. The results showed that the concentration of SRB was significantly higher in the acetic acid-containing system than in the acetic acid-free system, and the growth process could be divided into a rapid growth period (0 d-7 d) and a decline period (7 d-14 d). In the acetic acid-free system, the X65 steel mainly underwent uniform corrosion, with a uniform corrosion rate ranged from 0.204 mm/a to 0.225 mm/a, and the corrosion product was Fe3O4. In the acetic acid-containing system, local corrosion pits were formed on the sample surface, with rod-shaped SRB bacteria visible inside the pits. The corrosion products were Fe3O4 and FeS, and the local corrosion rate ranged from 0.365 mm/a to1.564 mm/a, while the uniform corrosion rate ranged from 0.046 mm/a to 0.068 mm/a. With the prolongation of immersion time, the electrochemical corrosion rate and local corrosion rate showed a decreasing trend. The addition of acetic acid significantly increases the concentration of SRB, a large number of SRB attach to the surface of X65 steel, its metabolic process, metabolic products and corrosion product film together lead to significant changes in the corrosion mechanism. The uniform corrosion tendency is reduced, but the risk of local corrosion increases significantly.

关键词

乙酸 / 硫酸盐还原菌(SRB) / 微生物腐蚀 / 腐蚀行为 / 局部腐蚀 / X65钢

Key words

acetic acid / sulphate-reducing bacteria (SRB) / microbiological corrosion / corrosion behavior / local corrosion / X65 steel

引用本文

导出引用
何婷婷, 冯艺, 闫化云, 王毛毛, 于海涛, 陈迎锋, 陆科洁. 硫酸盐还原菌(SRB)在乙酸环境中对X65钢腐蚀行为的研究[J]. 装备环境工程. 2025, 22(9): 138-146 https://doi.org/10.7643/ issn.1672-9242.2025.09.015
HE Tingting, FENG Yi, YAN Huayun, WANG Maomao, YU Haitao, CHEN Yingfeng, LU Kejie. Corrosion Behavior of X65 Steel by Sulphate Reducing Bacteria (SRB) in Acetic Acid Environment[J]. Equipment Environmental Engineering. 2025, 22(9): 138-146 https://doi.org/10.7643/ issn.1672-9242.2025.09.015
中图分类号: TG172   

参考文献

[1] SUN M, WANG X H, CUI W.Corrosion Behavior of X60 Pipeline Steel in the Presence of Sulfate Reducing Bacteria Cultured in Seawater and Mud from the East China Sea[J]. Measurement: Sensors, 2024, 34: 101266.
[2] 胥聪敏, 张津瑞, 朱文胜, 等. D-氨基酸对不同钢材混合菌腐蚀行为的影响[J]. 材料研究学报, 2023, 37(12): 924-932.
XU C M, ZHANG J R, ZHU W S, et al.Effect of D-Amino Acids on Corrosion Behavior of Different Steels Due to Mixed Bacteria[J]. Chinese Journal of Materials Research, 2023, 37(12): 924-932.
[3] UGARTE E R, SALEHI S.A Review on Well Integrity Issues for Underground Hydrogen Storage[J]. Journal of Energy Resources Technology, 2022, 144(4): 042001.
[4] 姜慧芳, 刘扬豪, 刘莹, 等. 地下储氢库J55钢氢环境下微生物腐蚀机理研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 347-358.
JIANG H F, LIU Y H, LIU Y, et al.Mechanism of Microbial Corrosion of J55 Steel in Hydrogencontaining Environments in Underground Hydrogen Storage Facilities[J]. Journal of Chinese Society for Corrosion and Protection, 2025, 45(2): 347-358.
[5] LI Y C, FENG S Q, LIU H M, et al.Bacterial Distribution in SRB Biofilm Affects MIC Pitting of Carbon Steel Studied Using FIB-SEM[J]. Corrosion Science, 2020, 167: 108512.
[6] 杨帆, 朱世东, 张锦刚, 等. 油气田中常见微生物腐蚀研究进展[J]. 表面技术, 2024, 53(18): 55-66.
YANG F, ZHU S D, ZHANG J G, et al.Research Progress of Common Microbial Corrosion in Oil and Gas Fields[J]. Surface Technology, 2024, 53(18): 55-66.
[7] LIU X Z, WANG Y H, SONG Y W, et al.The Respective Roles of Sulfate-Reducing Bacteria (SRB) and Iron-Oxidizing Bacteria (IOB) in the Mixed Microbial Corrosion Process of Carbon Steel Pipelines[J]. Corrosion Science, 2024, 240: 112479.
[8] 吕美英, 李振欣, 杜敏, 等. 培养基对微生物腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 757-764.
LYU M Y, LI Z X, DU M, et al.Effect of Culture Medium on Microbiologically Influenced Corrosion[J]. Journal of Chinese Society for Corrosion and Protection, 2021, 41(6): 757-764.
[9] SUN M Q, YANG J, WANG Z B, et al.Effect of Coexistence of Sulfate Reducing Bacteria and Nitrate Reducing Bacteria on the Under-Deposit Corrosion of Carbon Steel[J]. Corrosion Science, 2024, 231: 111958.
[10] FAN F Q, ZHANG B Y, LIU J B, et al.Towards Sulfide Removal and Sulfate Reducing Bacteria Inhibition: Function of Biosurfactants Produced by Indigenous Isolated Nitrate Reducing Bacteria[J]. Chemosphere, 2020, 238: 124655.
[11] 青佳奕, 丁阿强, 全林, 等. 页岩气管道微生物腐蚀及其防控研究进展[J]. 环境化学, 2025, 44(4): 1404-1416.
QING J Y, DING A Q, QUAN L, et al.Advances in Microbiologically Influenced Corrosion in Shale Gas Pipelines and Its Prevention and Control[J]. Environmental Chemistry, 2025, 44(4): 1404-1416.
[12] LI L H, GONG B, YUAN Y, et al.The Influence of HAc on Carbon Steel of CO2 Corrosion[J]. Journal of Natural Gas Science and Engineering, 2014, 32(3): 50.
[13] LI Y Z, XU N, LIU G R, et al.Crevice Corrosion of N80 Carbon Steel in CO2-Saturated Environment Containing Acetic Acid[J]. Corrosion Science, 2016, 112: 426-437.
[14] LIAO K X, LENG J H, HUANG Q, et al.The Effect of Acetic Acid on the Localized Corrosion of 3Cr Steel in the CO2-Saturated Oilfield Formation Water[J]. International Journal of Electrochemical Science, 2020, 15(9): 8622-8637.
[15] TALUKDAR A, RAJARAMAN P V.Effect of Acetic Acid in CO2-H2S Corrosion of Carbon Steel at Elevated Temperature[J]. Materials Today: Proceedings, 2022, 57: 1842-1845.
[16] LI P, DU M, HOU J, et al.Corrosion Behavior of 316L Stainless Steel in Oilfield Produced Water in Presence of CO2 and Acetic Acid[J]. International Journal of Electrochemical Science, 2020, 15(5): 4287-4307.
[17] LI Y Z, XU N, GUO X P, et al.The Role of Acetic Acid or H+ in Initiating Crevice Corrosion of N80 Carbon Steel in CO2-Saturated NaCl Solution[J]. Corrosion Science, 2017, 128: 9-22.
[18] 周涛, 徐向荣, 徐浩, 等. 基于渗透压理论对细菌生物膜生长的研究[J]. 井冈山大学学报(自然科学版), 2014, 35(5): 33-37.
ZHOU T, XU X R, XU H, et al.Research of Bacterial Biofilm Growth Based on Osmotic Pressure Theory[J]. Journal of Jinggangshan University (Natural Science), 2014, 35(5): 33-37.
[19] 张斐, 王海涛, 何勇君, 等. 成品油输送管道微生物腐蚀案例分析[J]. 中国腐蚀与防护学报, 2021, 41(6): 795-803.
ZHANG F, WANG H T, HE Y J, et al.Case Analysis of Microbial Corrosion in Product Oil Pipeline[J]. Journal of Chinese Society for Corrosion and Protection, 2021, 41(6): 795-803.
[20] 吕茜娣, 廖柯熹, 陈晓明, 等. SRB对20碳钢在气田采出水中腐蚀行为的影响[J]. 材料保护, 2019, 52(8): 88-94.
LYU X D, LIAO K X, CHEN X M, et al.Effects of SRB on Corrosion Behavior of Carbon Steel 20 in Produced Water of Gasfield[J]. Materials Protection, 2019, 52(8): 88-94.
[21] 舒韵, 闫茂成, 魏英华, 等. X80管线钢表面SRB生物膜特征及腐蚀行为[J]. 金属学报, 2018, 54(10): 1408-1416.
SHU Y, YAN M C, WEI Y H, et al.Characteristics of SRB Biofilm and Microbial Corrosion of X80 Pipeline Steel[J]. Acta Metallurgica Sinica, 2018, 54(10): 1408-1416.
[22] 刘芯月, 张兰, 岳明, 等. L360N管线钢在页岩气田采出水中硫酸盐还原菌作用下的腐蚀行为[J]. 机械工程材料, 2022, 46(4): 63-68.
LIU X Y, ZHANG L, YUE M, et al.Corrosion Behavior of L360N Pipeline Steel under Action of Sulfate-Reducing Bacteria in Produced Water of a Shale Gas Field[J]. Materials for Mechanical Engineering, 2022, 46(4): 63-68.
[23] 陈旭, 李帅兵, 郑忠硕, 等. X70管线钢在大庆土壤环境中微生物腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 175-181.
CHEN X, LI S B, ZHENG Z S, et al.Microbial Corrosion Behavior of X70 Pipeline Steel in an Artificial Solution for Simulation of Soil Corrosivity at Daqing Area[J]. Journal of Chinese Society for Corrosion and Protection, 2020, 40(2): 175-181.
[24] 万红霞, 李婷婷, 宋东东, 等. X80管线钢在硫酸盐还原菌作用下的腐蚀行为[J]. 表面技术, 2020, 49(9): 281-290.
WAN H X, LI T T, SONG D D, et al.Effect of SRB on Corrosion Behavior of X80 Pipeline Steel[J]. Surface Technology, 2020, 49(9): 281-290.
[25] 宋秀兰, 李亚新. 乙酸、丙酸和丁酸为SRB碳源时的利用率[J]. 中国矿业大学学报, 2007, 36(4): 527-530.
ONG X L, LI Y X.Utilization Ratio of Acetic, Propionic and N-Butyric Acids Used as Carbon Sources of SRB[J]. Journal of China University of Mining & Technology, 2007, 36(4): 527-530.
[26] 肖利萍, 张镭, 李月. 硫酸盐还原菌及其在废水厌氧治理中的应用[J]. 水资源与水工程学报, 2011, 22(1): 45-49.
XIAO L P, ZHANG L, LI Y.Application of Sulfate-Reducing Bacteria to Anaerobic Wastewater Treatment[J]. Journal of Water Resources and Water Engineering, 2011, 22(1): 45-49.
[27] 聂淑坤, 许凤玲, 刘钊慧, 等. 硫酸盐还原菌对船体低合金裸钢腐蚀行为的影响[J]. 材料开发与应用, 2023, 38(1): 29-41.
NIE S K, XU F L, LIU Z H, et al.Effect of Sulfate-Reducing Bacteria on Corrosion Behavior of the Low-Alloy Bare Steel for Hull[J]. Development and Application of Materials, 2023, 38(1): 29-41.

PDF(7869 KB)

Accesses

Citation

Detail

段落导航
相关文章

/